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The evolution of dynamic interactions between the knowledge 

development of powertrain systems 

 

 

ABSTRACT 

Competition in the already highly competitive automotive industry intensified in the 

early 1990’s. The ubiquitous internal combustion engine began to be challenged by the upstart 

alternatives of battery and hybrid electric vehicles, which has led to an intricate web of 

knowledge development. Our research aims to qualify and quantify the dynamic relationships 

that formed in the knowledge development of powertrains by adopting conceptual insights 

from evolutionary ecology. Specifically, the interdependent relationships observed in the 

Technological Innovation System (TIS) framework is similar to that between species such that 

powertrain systems can either support or inhibit the knowledge growth of one another over 

time. Our theoretical framework extends the economics of technical change within 

technologies vis-à-vis the concept of ‘positive and negative externalities’ and ‘knowledge 

development co-dynamics’. We use patents data extracted from Thomson Reuters' Derwent 

Innovations Index to measure the knowledge development in each technological field and 

apply the biological Lotka-Volterra (L-V) model to analyse the data across three separate time 

periods 1985-1996, 1997-2007, and 2008-2016. Our results show that the behaviour of the 

powertrain systems change over time as they have behaved as creative (or uncreative) and 

explorative (or exploitative). We also demonstrate that the powertrain systems go through 

temporal transitions where the relationship mode between them changes between amensalism, 

parasitism, commensalism, and symbiosis. In line with this we recommend that policy makers 

not only devise strategies (offensive or defensive) for each interaction modes but to also 

consider changing their strategies when there is transition between the modes. Furthermore, 

policy makers should consider the dual role of ‘creation’ and ‘destruction’ in their innovation 

policy mixes.  
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1. Introduction 

Ever since humans first learned to harness fire, technological evolution and innovation 

has played a crucial role in driving both economic and social change (Coccia, 2019d). While 

evolution is generally considered to be the “progressive growth of a system that generates a 

transition from simple to complex system in nature and society” (Coccia, 2019c, p1), 

understanding how technologies evolve over time can be complex and problematic (Arthur, 

2009). This is true in studying the evolution of vehicle powertrain technologies, which 

traditionally have involved a large number of environmental, organisational, political and 

technological factors (Dijk et al., 2016; Høyer, 2008). Using the technology definition by 

Coccia (2017), the incumbent powertrain of internal combustion engine vehicle (ICEV) can be 

defined as a complex system which is comprised of several components and sub-systems such 

as combustion engine, fuel and exhaust systems and transmission (Poullikkas, 2015) that are 

connected with one another in a way that the system has satisfied the transportation needs of 

modern society. The introduction of the battery electric vehicle (BEV) powertrain was a 

disruptive technology that replaced the entire components and sub-systems found in ICEV with 

batteries, charger, power convertor and controller, traction motor etc. However, the hybrid 

electric vehicle powertrain (HEV1) created a transitionary alternative, as this powertrain 

hybridises the components and sub-systems of both ICEV and BEV (Poullikkas, 2015). 

It has been often pointed out that the process of technological evolution closely 

resembles that of biological evolution (Arthur, 2009; Basalla, 1988; Coccia, 2017, 2019b,c,d; 

Kauffman and Macready, 1995; Mirzadeh Phirouzabadi et al., 2020a; Mirzadeh Phirouzabadi 

et al., Unpublished results; Solé et al., 2011), and while technological evolution is (for now) 

not capable of self-production it is driven by the Generalized Darwinism concepts of variation, 

selection and retention (Coccia, 2019a,b; Solée et al., 2013). Furthermore, technological 

evolution can also include aspects of tinkering, convergence, and contingency in biological 

evolution, especially when cost/or energy is constrained for optimisation (Solée et al., 2013). 

In line with this perspective several studies have argued that evolution, whether biological or 

technological, is a narrative of coevolution as the adaptive alterations of one technology can 

influence the landscape of other neighbouring technologies (Coccia, 2017, 2019d,e; Kauffman 

and Macready, 1995). For example, we can observe that the technological evolution and 

advancement within the components of both ICEV and BEV has over time improved the 

components of the hybrid powertrain of HEV (Dijk, 2014; Dijk et al., 2015; Köhler et al., 
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2013). As such technological evolution is not a simple linear process about a single entity but 

is rather a story of co-evolution between technologies (Coccia, 2019b).  

The analysis of most studies in the literature, however, either did not include both 

positive and negative influences that one powertrain has on the knowledge growth of other 

powertrains, or when included, they only assumed a pre-defined constant positive influence 

between them (Al-Alawi and Bradley, 2013). Our article addresses the literature shortcoming 

by exploring the behaviour and evolution of a powertrain technology interactions and their 

dependence on other powertrain technologies for knowledge development. We explore the 

supportive and inhibitive forces between the knowledge growth of the powertrain systems by 

conceptualising the Technological Innovation System (TIS) framework and quantifying the 

biological models using Lotka-Volterra (L-V) equations. We measure the state of knowledge 

development of each technological field through patents data extracted from Thomson Reuters' 

Derwent Innovations Index (DII) for the three separate time periods 1985-1996, 1997-2007, 

and 2008-2016. Our theoretical framework extends the economics of technical change within 

technologies vis-à-vis the concept of ‘positive and negative externalities’ and ‘knowledge 

development co-dynamics’.   

This article is structured as follows. Section 2 presents the theoretical background and 

literature. Section 3 elaborates data collection and analysis method. Section 4 presents results 

and findings. Finally, our discussion and conclusions are presented in Section 5.  

 

2. Literature review 

Technological evolution can be defined as the gradual growth of a system that involves 

a transition from simplicity to complexity not only in terms of intra-component interactions 

(i.e. the linkages between one’s own component and sub-systems) but also in terms of inter-

systems interactions (i.e. the relationships with other associated systems) (Coccia, 2019b,c; 

Simon, 1991). In order to satisfy the increasing needs of humans in society, both the intra- and 

inter- systems interactions are necessary. The interaction between multiple technologies in the 

innovation and transition literature is described in three types (Andersen and Markard, 2019): 

intra-sector technology interaction (Geels, 2018; Markard and Hoffmann, 2016), inter-sector 

technology interaction (Arthur, 2009; Murmann and Frenken, 2006), and cross-sector 
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technology interaction (Rosenbloom, 2019). This has included work on nested hierarchies of 

interrelated technological components (Clark, 1985; Simon, 1962); technology- and sector- 

level complementarities (Haley, 2018; Markard and Hoffmann, 2016); interplay between 

upstream and downstream parts of the value chains (Sandén and Hillman, 2011); and multiple 

niche-regime interaction (Geels, 2002; Raven and Verbong, 2007). The research in this field 

has conceptualised the co-evolution and interaction of multiple technologies into two main 

strands, the Multi-Level Perspective (MLP) and the Technological Innovation System (TIS) 

framework (Andersen and Markard, 2019; Markard and Truffer, 2008). 

The MLP approach conceptualises the pure symbiotic and competitive interplays 

between niches (emerging technologies) and regime (incumbent technology) within the 

landscape (environment) (Geels, 2002). Competition occurs when niches and regime have a 

negative effect on one another; and symbiosis when they affect one another positively. This 

has been frequently applied to historical case studies to investigate four generic transition 

pathways based on the timing and nature of interactions between the three levels (Geels and 

Schot 2007a):  

• Reproduction pathway: moderate landscape pressure occurs at the moment a symbiotic 

relationship is shaped between an underdeveloped niche and a well-powered regime.  

• De-alignment and re-alignment pathway: large landscape pressure occurs at the 

moment a symbiotic relationship is shaped between an underdeveloped niche and an 

ill-powered regime.  

• Substitution pathway: large landscape pressure occurs at the moment a competitive 

relationship is shaped between a well-developed niche and a well-powered regime, and  

• Re-configuration pathway: large landscape pressure occurs at the moment a 

competitive relationship is shaped between a well-developed niche and an ill-powered 

regime.   

The pure competitive or symbiotic relationship conceptualised in the MLP approach is 

limited to the traditional theories of technological evolution such as Porter (2008)’s diamond 

model, or Fisher and Pry (1971)’s substitution model, which only formulate the symmetric 

relationships between technologies. Alternatively, the new theories of technological 

evolution— e.g. the predator-prey approach (Farrell, 1993), the theory of technological 

parasitism and virus technologies (Coccia, 2017, 2019b,c,d), and the multi-mode technology 

interaction theory (Mirzadeh Phirouzabadi et al., 2020a; Mirzadeh Phirouzabadi et al., 
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Unpublished results; Pistorius and Utterback, 1997; Sandén and Hillman, 2011)— borrow and 

include the more nuanced (and asymmetric) relationships defined between biological species. 

These relationships include parasitism, commensalism, amensalism, and neutralism (Coccia, 

2019d; Farrell, 1993; Mirzadeh Phirouzabadi et al., Unpublished results; Pistorius and 

Utterback, 1997; Sandén and Hillman, 2011). Parasitism occurs when one technology has a 

positive impact on the other and a negative impact on the other; commensalism occurs where 

there is a positive impact for one but the other is not affected; amensalism occurs when there 

is a negative effect for one but the other is not affected; and finally neutralism occurs when 

there is no effects on either technology. The new theories of technological evolution compare 

and resemble technological evolution to biological evolution due to some reasons. First, 

according to Arthur and Polak (2006)’s definition of technology2, the build-up of complex 

technologies depends on the existence of simpler, earlier technologies that have been 

developed for intermediate or simpler societal needs. This mirrors the observations in 

biological evolution by Lenski et al. (2003) that the creation of complex features and functions 

depends on the existence of simpler features and functions that have been first favoured and 

acted as steppingstones. Second, the Generalized Darwinism concepts of variation, selection 

and retention can explain how the nature of innovation processes as well as the evolution of 

complex technologies evolve (Bryan et al., 2007; Coccia, 2019b; Hodgson and Knudsen, 2006; 

Solée et al., 2013). This conceptualisation is used to define the various stages of technological 

life cycle (Murmann and Frenken, 2006): i.e. a sequence of an era of ferment (variation), an 

era of dominant design (selection), and an era of incremental innovation (retention). Last but 

not least, both biological and technological evolutions involve cost/energy constraints since 

efficiency is a common important factor for driving improvements in both biological and 

technological systems due to limited resources (Solée et al., 2013). 

Based on the new theories of technological evolution, the second major strand of 

research the TIS framework conceptualises the co-evolution and interaction of multiple 

technologies by accommodating all the six biological relationship modes. The innovation 

systems approach generally focuses on the structures and dynamics that support or inhibit the 

emergence of innovation at national, regional, sectoral and technological level (Markard and 

Truffer, 2008). In particular the TIS framework conceptualises the structures and dynamics 

that support or inhibit the knowledge growth of technologies vis-à-vis knowledge development 

dynamic and knowledge development co-dynamic3. The TIS knowledge development dynamic 

is related to processes and activities that are endogenous to a single technology and reinforce 
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or deteriorate the knowledge evolution (performance) of the technology (Hekkert et al., 2007; 

Markard and Truffer, 2008). The knowledge in a TIS is built through positive internal feedback 

such as early investments and economies of scale and learning (Mirzadeh Phirouzabadi et al., 

Unpublished results; Sandén and Hillman, 2011) and negative internal feedback such as 

resource dwindles (Sandén and Hillman, 2011) and reaching technological performance ceiling 

(Papachristos, 2017). According to this framework, the growth in a powertrain technology can 

support or inhibit the growth in the other powertrain technologies over time as per the 

biological relationship modes (Mirzadeh Phirouzabadi et al., 2020a; Mirzadeh Phirouzabadi et 

al., Unpublished results; Sandén and Hillman, 2011). It is, hence, possible for the knowledge 

dynamic in one TIS to be influenced by and coupled to the knowledge dynamic in another TIS, 

called knowledge development co-dynamics. This way the TIS’s knowledge can be built 

through positive external feedback mechanisms such as knowledge spillovers from other TISs 

(Noailly and Shestalova, 2017) or negative external feedback such as intense competition over 

sources or ideas with other TISs (Carnabuci, 2010; Mirzadeh Phirouzabadi et al., Unpublished 

results) or the dismantling of its knowledge networks by external actors (Castiaux, 2007; 

Kivimaa and Kern, 2016; Mirzadeh Phirouzabadi et al., Unpublished results). Ultimately, the 

combined and accumulated positive and negative feedback of the TIS, whether endogenous or 

exogenous, generate the complete S-shaped curve of TISs (Pistorius and Utterback, 1997; 

Sandén and Hillman, 2011).  

In addition to the two conceptual streams of research, there are five quantification 

approaches that measure technological evolution and interactions (Magee, 2012): patent 

analysis (Borgstedt et al., 2017; Oltra and Saint Jean, 2009); journal and magazine articles 

analysis (Bohnsack et al., 2015; Sarasini, 2014); market share (Eppstein et al., 2011; Pasaoglu 

et al., 2016; Sullivan et al., 2009); major innovation counts (Sick et al., 2018); and technical 

capability dynamics (Zhang et al., 2019a). The bibliometrics analysis approach uses trade 

journal articles or magazines as a source of basic research activities to measure the scientific 

knowledge performance in the field of powertrain technologies (Bohnsack et al., 2015; 

Sarasini, 2014; Sick et al., 2018; Watts and Porter, 1997). For example, Bohnsack et al. (2015) 

used the archival data of various magazines4 to investigate the recurring waves of carmakers’ 

low-emission-vehicle investments on local, national and international levels and accordingly 

explored the influence of geographically bound government policies on carmakers’ innovation 

strategies. The patent analysis approach uses patents data as a source of applied research and 

development activities to measure the technological knowledge performance in technology life 
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cycle (Sick et al., 2018; Watts and Porter, 1997). There are quite a number of studies that have 

applied the patent analysis approach to investigate the technological evolution of powertrain 

technologies (Barbieri, 2016; Borgstedt et al., 2017; Choi, 2018; Faria and Andersen, 2017a; 

Faria and Andersen, 2017b; Mirzadeh Phirouzabadi et al., 2020a; Oltra and Saint Jean, 2009; 

Sarasini, 2014; Sick et al., 2016; Wesseling et al., 2014a; Wesseling et al., 2015). For example, 

investigating the chronological patenting share of car manufacturers it is observed that their 

strategy has been more converged towards green ICEV-related innovations than HEV or BEV 

(Faria and Andersen, 2017a; Faria and Andersen, 2017b).   

The major innovation counts approach explores the chronological major innovations in 

the automotive industry using for example concept models, prototypes, products launches, and 

start-up companies (Sick et al., 2018; Sierzchula and Nemet, 2015; Watts and Porter, 1997; 

Wesseling et al., 2015). Sick et al. (2018) gained insight into the transition from R&D phase to 

application phase in the battery technology life cycle by exploring the state of new product 

launches and start-up companies over time. However, their analysis was less in depth and in 

details as it was predominantly based on the raw number rather than the content of new product 

launches and start-up companies. The technical capability dynamics approach quantifies not 

only the value of a given incremental improvement built in a technology but also the role of 

material innovations in overall technological evolution (Magee, 2012). Technical capability is 

defined as a performance measure for a key technical function that the technology is intended 

to achieve. The metrics used in this approach are more technical than managerial such as speed, 

capacity, and energy efficiency (Zhang et al., 2019a). For example, while the BEV powertrain 

converts 59%–62% of the electrical energy from the grid to power at the wheels, the energy 

efficiency of ICEV is between 17%–21% (Zhang et al., 2019a). This approach is useful when 

there’s a technical improvement in any hierarchical part of a technological system and the aim 

is to identify its trickle-down or trickle-up effects between the system technology (e.g. the BEV 

powertrain), the component technology (e.g. battery) and the fundamental technology (e.g. 

superalloys) (Zhang et al., 2019a; Zhang et al., 2018).   

The last approach, market share analysis, deals with the diffusion or the penetration 

rate of powertrain technologies in market using various modelling approaches (Al-Alawi and 

Bradley, 2013) such as agent-based model (Adepetu et al., 2016; Pasaoglu et al., 2016; Sullivan 

et al., 2009), consumer choice model (Javid and Nejat, 2017; Rezvani et al., 2015; Santini and 

Vyas, 2005; Shepherd et al., 2012; Struben, 2006), and diffusion and time series model 
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(Muraleedharakurup et al., 2010; Trappey and Wu, 2008). For example, the studies using 

diffusion and time series model investigated and forecasted the rate at which powertrain 

technologies are adopted and diffused in market through the diffusion models of Bass (Cao, 

2004; Jeon, 2010), Gompertz, and Logistic (Muraleedharakurup et al., 2010; Trappey and Wu, 

2008). Or the studies using consumer choice model compared the market penetration rate of 

powertrain technologies in terms of consumer’s preferences and limits using multinomial logit 

model (MNL) and nested multinomial logit model (NMNL) (Rezvani et al., 2015; Santini and 

Vyas, 2005; Struben, 2006). 

While each of the five quantification approaches has several different advantages, they 

still suffer from some shortcomings. The studies using the bibliometric and patent approaches 

only investigated the scientific or technological trend and pattern of powertrain technologies 

individually, and accordingly compared them in terms of the number of publications or patents 

or the number of backward or forward citations. Bibliometric data, in particular, can only cover 

the early stage of technology life cycle and are not able to represent a full and exhaustive 

innovation or technological progress of R&D activities. The main drawbacks of the major 

innovation counts approach are that not only there is a lack of objectivity as to what is included 

as innovation, but also there’s a lack of statistical method as to how an in-depth innovation 

content should be measured (Magee, 2012). With regard to the technical capability dynamics 

approach, it’s argued that the technical performance metrics used by the studies generally 

evolve much slower than the business performance metrics (such as patents, cost, price, 

production, sales revenue, and profit) and they are less factual than the business metrics (Zhang 

et al., 2019c). This is because the technical performance metrics are not collected and published 

in a periodic manner (i.e., quarterly or yearly) and the proprietor of the data usually retains 

only the greatest performance value in each time period (Zhang et al., 2019c). Finally, while 

the studies using the market share approach are quite well established in describing the market 

behaviour of powertrain technologies, their analysis often does not focus on the technical and 

technological improvements over time (Magee, 2012).  

From the literature, it is observed that the majority of the quantification studies did not 

include both the positive and negative influences on the knowledge growth of other 

powertrains, and when the interaction was included, they only assumed a pre-defined constant 

positive influence between them (Al-Alawi and Bradley, 2013). This is because the 

technological development of powertrain technologies are mostly associated to factors such as 
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oil price (Barbieri, 2016), suppliers’ capabilities (Borgstedt et al., 2017), infrastructure (Dijk 

et al., 2015), carmakers’ strategies (Wesseling et al., 2015), increasing returns (Sierzchula et 

al., 2015), and legitimisation (Sierzchula et al., 2015). So, they come short at uncovering and 

analysing the dynamic interactions between powertrain technologies in the form of both 

positive and negative influences over time. 

 

3. Methodology 

We measure the state of knowledge development of each technological field through 

patents data extracted from Thomson Reuters’ Derwent Innovations Index (DII). While many 

studies using the patent analysis approach have not addressed the problem of multi-technology 

interactions for powertrain technologies, the approach is still worth pursuing as patents data 

remain the best and most appropriate source of knowledge data. First, patents data are known 

as the best available indicator for the R&D outcome of a car manufacturer in the industry (Oecd, 

1994). Second, the inventions in a similar technological field can be easily distinguished as car 

manufacturers do not usually distinguish between the budget that they allocate to each 

powertrain technology (Sierzchula and Nemet, 2015). Third, we are able to observe the 

technological change and progress of a powertrain technologies in the form of a time series 

analysis due to availability of yearly numbers (Borgstedt et al., 2017). This is especially crucial 

for emerging disruptive powertrain technologies such as BEV as their patent-based life cycle 

provides richer information than sales-based life cycle (Faria and Andersen, 2017b). Finally, 

patents data as a business performance metric are superior to the technical performance metrics 

e.g. speed or energy efficiency due to their faster evolution and more factual nature (Zhang et 

al., 2019c). 

However, there are a number of restrictions when it comes to using the number of patents 

data as a proxy for knowledge development. First, not all inventive or innovative activities in an 

industry emerge as patents (Borgstedt et al., 2017; Oltra and Saint Jean, 2009). Second, there 

are differences between national patenting systems in terms of laws and rules, e.g. the required 

degree of novelty (Borgstedt et al., 2017; Oltra and Saint Jean, 2009). Last, it can be a 

cumbersome process to read and verify the quality and content of patents for their 

appropriateness for analysis (Barbieri, 2016).  

We have attempted to minimise these restrictions by using the original, comprehensive 
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patents database provided by Mirzadeh Phirouzabadi et al. (2020a) and Mirzadeh Phirouzabadi 

et al. (2020b). For the first restriction, it has been showed that a relatively high share of 

inventions in the automotive industry is actually patented by the players since the industry 

strongly relies on patents as a means to protect against imitations (Cohen et al., 2000). For the 

second restriction, the patent database was extracted from Thomson Reuters’ Derwent 

Innovations Index (DII) as one of the largest patent databases with access to over 80 granting 

authorities worldwide. For the last restriction, they adopted a combined search strategy of 

patent classifications and keywords (Appendix A) in order to accurate their patents database. 

The data was processed not only based on ‘patent families5’ to avoid the multiple counting of 

the same inventions (Borgstedt et al., 2017, p78), but also based on ‘priority date6’ to avoid 

any additional lags, e.g. 18 months on average (Barbieri, 2016). The authors additionally 

conducted a manual validity check for at least 5% of the patents to verify the quality of the 

results7 (Borgstedt et al., 2017). 

The annual state of technological knowledge development of powertrain (i) during a 

single year (t) (T=1985, …, 2016) is calculated in our research by the sum of patents that have 

been granted in its technological field during year (t) (Eq. 1): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 = �𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝑡𝑡

 (1) 

To quantify the multi-technology interactions, or in our particular case the supportive 

and inhibitive forces between the knowledge growth of the powertrain systems, we introduce 

and apply the Lotka-Volterra (L-V) equations model, which was originally used to compute 

the intra- and inter-population interactions among biological species (Lotka, 1926; Volterra, 

1927). The L-V equations are applied to calculate both the endogenous and exogenous 

knowledge growth of the interacting technologies over time (Mirzadeh Phirouzabadi et al., 

2020a; Pistorius and Utterback, 1997; Sandén and Hillman, 2011; Zhang et al., 2017), such as 

skyscraper and cement technologies (Zhang et al., 2017, 2018), cutting-edge fusion 

technologies, and high value-added service technologies (Lee and Kim, 2010), and vehicle 

powertrains (Mirzadeh Phirouzabadi et al., 2020a; Sun and Wang, 2018). The equations are 

demonstrated to be comprehensive enough to produce the solution sets of a variety of standard 

mathematical forecasting functions8 that are used in the field of powertrains, such as simple or 

decaying exponential functions, Logistic (e.g. for ICEV’s growth rate by Song and Aaldering 

(2019)), Bass (e.g. for HEV’s rate of adoption by Mcmanus and Senter Jr (2009)), and 
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Gompertz (e.g. for HEV’s rate of adoption by Muraleedharakurup et al. (2010)). Additionally, 

the L-V parameters can be considered as the descriptors of the causal factors of technological 

changes and evolution in the field of powertrain technologies e.g. R&D investment and 

government policy (Zhang et al., 2017). 

The following equations show the L-V equations which were originally proposed for 

the case of continuous data. Here for brevity we only describe the parameters for the ICEV 

powertrain and its interaction with HEV and BEV as expressed in Eq. 2. The parameters used 

in Eq. 3 and 4 have the same definition but are only applicable for HEV and BEV, respectively. 

𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)
𝑑𝑑𝑡𝑡

= �𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡) −  𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡)

−  𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐵𝐵𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡)�(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)
= 𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡) − 𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)2
−  𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡)(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)
−  𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐵𝐵𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡)(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡) 

(2) 

𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡)
𝑑𝑑𝑡𝑡

= �𝑎𝑎𝐻𝐻𝐼𝐼𝐼𝐼 − 𝑏𝑏𝐻𝐻𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡) −  𝑐𝑐𝐻𝐻𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)  

− 𝑐𝑐𝐻𝐻𝐼𝐼𝐼𝐼,𝐵𝐵𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡)�(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡)
= 𝑎𝑎𝐻𝐻𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡) − 𝑏𝑏𝐻𝐻𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡)2
−  𝑐𝑐𝐻𝐻𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡)
−  𝑐𝑐𝐻𝐻𝐼𝐼𝐼𝐼,𝐵𝐵𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡)(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡) 

(3) 

𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡)
𝑑𝑑𝑡𝑡

= �𝑎𝑎𝐵𝐵𝐼𝐼𝐼𝐼 − 𝑏𝑏𝐵𝐵𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡) −  𝑐𝑐𝐵𝐵𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)

−  𝑐𝑐𝐵𝐵𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡)�(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡)
= 𝑎𝑎𝐵𝐵𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡) − 𝑏𝑏𝐵𝐵𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡)2
−  𝑐𝑐𝐵𝐵𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡)
−  𝑐𝑐𝐵𝐵𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡)(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡) 

(4) 

𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡 represents the annual state of technological knowledge development of ICEV 

in year t, and the derivative 𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)
𝑑𝑑𝑡𝑡

 tracks the technological knowledge change rate of the 

powertrain. 𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 refers to the endogenous knowledge growth rate of ICEV when the 

powertrain is developing alone. The more positive the value of the knowledge growth rate of 

the powertrain the more likely the system emphasises knowledge creativity and variety (the 

more negative the value, the more likely the system opposes knowledge variety and lacks 

creativity) (Castiaux, 2007). The 𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 term refers to the internal interaction rate of ICEV when 

it is developing alone. The more positive the value of the internal interaction rate, the more 

likely the technological system tends to archive, control, maintain and exploit its knowledge 
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(the more negative the value, the more likely the system emphasises emergent matters, 

flexibility and knowledge exploration in order to create radical innovations) (Castiaux, 2007). 

Together the endogenous knowledge growth rate and the internal interaction rate are used to 

calculate the system’s carrying capacity. It describes a maximal limit or saturation point in the 

system’s knowledge building that is imposed by the limited resources in the industry (Castiaux, 

2007; Miranda and Lima, 2013). The more positive the carrying capacity, the more likely the 

environment is favourable to the powertrain; the more negative the carrying capacity, the more 

likely the environment is unfavourable to the powertrain as the required new resources are 

depleted9 (Advani et al., 2018; Hui, 2006). The carrying capacity of the powertrain can be 

calculated10 as 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼=𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼/|𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼|. Table 1 shows the interpretation for the negative and 

positive values of ICEV’s endogenous knowledge growth rate, internal interaction rate, and 

carrying capacity.  

The third parameter is the external interaction parameter such as 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼 which 

represents the rate at which the knowledge growth in ICEV is affected by HEV. The sign of 

this parameter determines which relationship mode is established between the interacting 

powertrains (see Table 2).   

 

 Sign of parameter 
 + - 
𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 endogenous 
knowledge growth rate 

creative uncreative 

𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 internal interaction 
rate 

exploitative explorative 

𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 carrying capacity favourable environment with 
abundance of new resources 

unfavourable environment with 
deplete of new resources 

Table 1. Interpretation for the negative and positive sign of endogenous knowledge growth rate, internal 
interaction rate, and carrying capacity of ICEV 

 

Mode of 
interaction 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼  𝐼𝐼𝐻𝐻𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 Description 

Competition + + Both powertrains have a negative influence on each 
other 

Symbiosis - - Both powertrains have a positive influence on each 
other 

Neutralism 0 0 Neither affects the other 
Parasitism  -(+) +(-) One has a positive influence on another, while the 

other has a negative influence (or vice versa) 
Commensalism 0(-) -(0) One has a positive influence on another, while the 

other has no influence (or vice versa) 
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Amensalism 0(+) +(0) One has a negative influence on another, while the 
other has no influence (or vice versa) 

Table 2. Modes of interaction between the two powertrains of ICEV and HEV (Pistorius and Utterback, 
1997; Sandén and Hillman, 2011) 

 

Eq. 2-4 are expressed for continuous data. Since our data is discrete (i.e. patent counts), 

we have transferred the continuous L-V equations to the discrete version proposed by Leslie 

(1958). Here we only express the discrete L-V equations for the case of ICEV as the formula 

is the same for the other two powertrains: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡+1

=  
𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)

1 + 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡) + 𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐼𝐼𝐼𝐼,𝑡𝑡) + 𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐵𝐵𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐼𝐼𝐼𝐼,𝑡𝑡)
 (5) 

 

Where 𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡+1 corresponds to 𝑑𝑑(𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡)
𝑑𝑑𝑡𝑡

 expressed in Eq. (2), 𝛼𝛼𝑖𝑖 corresponds to 

𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 to 𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, and 𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼 to 𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼 in the same equation. The continuous 

parameters in Eq. 2 can be calculated by the discrete parameters in Eq. 5 as follows: 

𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = ln𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  (6) 

𝑏𝑏𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
=  

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ln𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 1

    (7) 

𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼

=  
𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼 ln𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 1
    (8) 

We estimate and calculate the discrete L-V parameters using the non-linear least-square 

method (Kim et al., 2006) via the two packages of Statistical Package for Social Sciences 

(SPSS version 25) and Microsoft Excel (version 16.23). We set the iteration convergence 

criterion set at 0.0001 using the Levenberg-Marquardt algorithm (Kim et al., 2006; Kreng et 

al., 2012). The initial value of, for instance, 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is set at 1, and the values of 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 

𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝐻𝐻𝐼𝐼𝐼𝐼 at 0.001 (Choi et al., 2016). 
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In line with Mirzadeh Phirouzabadi et al. (2020a) and Mirzadeh Phirouzabadi et al. 

(2020b), we have chosen the time frame of 1985-2016 as our observation period since the year 

1985 is known as a starting point for the sustainable development, mobility and transport 

discourses in the late 1980s (Høyer, 2008). The time frame ends in 2016 due to the data 

availability of patents since a patent application is published by a delay of 18 month starting 

with the priority date. To acquire a better fine-grained level of analysis and reveal the change 

of behaviour and evolution of the powertrain technologies, we have used the time frame 

segmentations11 proposed by Mirzadeh Phirouzabadi et al. (2020a): 

• Towards sustainable mobility (1985-1996): it covers the global warming and 

sustainable development discussions which led to the main environmental 

regulations such as the 1990 Clean Air Act Amendments and the 1990 

California ZEV mandate, the introduction of the GM EV1, the establishment of 

institutions such as the 1991 U.S-based Advanced Battery Consortium 1991, 

the 1993 Partnership for a New Generation of Vehicles (PNGV) and the 1994 

Automotive Research and Technological Development Master Plan (Høyer, 

2008; Wesseling et al., 2014b). 

• Towards hybridisation (1997-2007): it covers the demise of BEV in the early 

2000s, the incremental improvements in ICEV, and the multiple relaxations and 

amendments of the ZEV mandate which led to not only the revival but also the 

mass production of HEV with Toyota Prius in 2000 (Magnusson and Berggren, 

2011; Wesseling et al., 2014b). 

• Towards mass commercialisation (2008-2016): it covers the immediate effects 

of the 2007 financial crisis as well as the 2005 fuel price rise, the 2012 ZEV 

mandate amendment, and the mass commercialisation of BEV with Mitsubishi 

i-MiEV (2009), Nissan Leaf (2010) and Tesla Roadster (2008) and Model S 

(2012) (Wesseling et al., 2014b). 

 

4. Results 

Table 3 and Figure 1 show the absolute and relative number of patents12 over the entire 

period. Figure 1a shows that the number of patents for all the three powertrains have been 
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growing between the early 90’s and the early 2010’s. Both BEV and HEV did not possess any 

patents until after the late 90’s. Figure 1b depicts that the share of patents for HEV and 

especially for BEV has increased since the late 80’s, and the share of patents for ICEV has 

been either decreasing or constant during the entire time frame. We can see from Figure 1a and 

1b that the incumbent powertrain of ICEV never loses its dominant position to the other two 

powertrains during the entire period.  

 

 Number ICEV HEV BEV Total 
Towards sustainable mobility (1985-1996) Absolute 

Relative 
6,200 

87.86% 
262 

3.71% 
595 

8.43% 
7,057 

100.00% 
Towards hybridization (1997-2007) Absolute 

Relative 
19,805 
71.61% 

3,880 
14.03% 

3,970 
14.36% 

27,655 
100.00% 

Towards mass commercialization (2008-2016) Absolute 
Relative 

23,149 
52.59% 

6,746 
15.32% 

14,125 
32.09% 

44,020 
100.00% 

Entire period (1985-2016) Absolute 
Relative 

49,154 
62.43% 

10,888 
13.83% 

18,690 
23.74% 

78,732 
100.00% 

Validity check Size 2,460 545 940 3,945 
 Quality 87.25% 89.80% 88.25% 87.84% 

Table 3 - The absolute and relative number of patents per powertrain and timespan adopted from Mirzadeh 
Phirouzabadi et al. (2020a) 

 
 

‘Towards 
sustainable mobility’ 

‘Towards  
hybridisation’ 

‘Towards  
mass commercialisation’ 

 

 
(a) Absolute number 
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(b) Relative share  

 
Figure 1 – The number and share of patents granted (1985-2016) (Mirzadeh Phirouzabadi et al., 2020a) 

 

Table 4, Table 7, and Table 9 depict our estimation results for the first, second and third 

episode, respectively. Table 5, Table 8, and Table 10 interpret13 the estimated L-V parameters 

for the first, second and third episode, respectively. Our estimated inter-powertrain 

relationships are depicted for all the three episodes in Table 6. In the followings, we present 

and explain our results for each episode.  

Our estimation results for the period of 1985-1996 (Table 4) show that ICEV was 

estimated with the positive carrying capacity of 4.25E+02. This means that ICEV was 

developing in an environment which was moderately well-supplied with the new resources 

required for the further technological development of the powertrain (Table 5). The moderately 

favourable environment with the abundance of new resources made the powertrain as the most 

creative powertrain during 1985-1996 since it was estimated with the positive intrinsic 

knowledge growth rate of 𝑎𝑎=5.97E-01. This situation can be explained by the sharp decline in 

gasoline and diesel price in the 80s (Barbieri, 2016), and also by the earlier environmental 

regulations and standards14 (Faria and Andersen, 2017b). These led to improvements in 

different components of the powertrain such as stoichiometric carburettor system, air fuel 

ratios, exhaust gas recirculation, crankcase and evaporative emission controls, electronic 

ignition timing, and fully electronic systems with fuel injection (Faiz et al., 1996). On the other 

hand, the intrinsic knowledge growth rate for both HEV and BEV was estimated to be negative, 

-1.06E+00 and -5.76E-01, respectively. This means that HEV and BEV were found to be 

moderately and slightly lacking knowledge creativity and variety in their technological system, 

respectively (see Table 5). This situation happens when the population of patents in a 
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technological field exceeds the effective carrying capacity to an extent that the environment is 

no longer able to provide the required new resources for further knowledge development. This 

is why the effective carrying capacity of HEV and BEV was estimated to be negative (k=-

5.54E+01 and -1.52E+02, respectively). The internal interaction rate for all the three 

powertrains was estimated to be positive, which means all the powertrains tended to act more 

like a knowledge exploiter than a knowledge explorer. We discovered HEV to be highly 

exploitative (b=1.91E-02), while both BEV and ICEV were found to be moderately 

exploitative (b=3.78E-03 and 1.41E-03, respectively). 

 Parameters 
(t–value)  

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑘𝑘𝑖𝑖=𝑎𝑎𝑖𝑖/|𝑏𝑏𝑖𝑖| 𝐼𝐼𝑖𝑖,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝑖𝑖,𝐻𝐻𝐼𝐼𝐼𝐼 𝐼𝐼𝑖𝑖,𝐵𝐵𝐼𝐼𝐼𝐼 R2 

ICEV 5.97E-01 1.41E-03 4.25E+02 - -4.88E-03 -3.02E-03 0.9790  
(3.24E+00**) (1.39E+00*)  - (-1.02E+00) (-2.23E+00*) 

HEV -1.06E+00 1.91E-02 -5.54E+01 -2.83E-03 - -2.35E-03 0.9970  
(1.34E+01***) (3.57E+01***)  (-3.09E+01***) - (-6.78E+00***) 

BEV -5.76E-01 3.78E-03 -1.52E+02 -2.27E-03 9.29E-03 - 0.9710  
(3.83E+00***) (2.31E+00**)  (-1.14E+01***) (4.28E+00***) - 

The estimation performance is good because all of the R2 are greater than 0.85 (Kreng et al., 2012).  
Notes: *, **, *** significant at p<0.1; p<0.05; p<0.01 

Table 4- Results of parameters estimation for 1985-1996 ‘towards sustainable mobility’ 

 

 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑘𝑘𝑖𝑖 

ICEV Highly creative Moderately exploitative Moderately favourable environment with abundance of new 
resources 

HEV Moderately uncreative Highly exploitative Slightly unfavourable environment with deplete of new resources 

BEV Slightly uncreative Moderately exploitative Slightly unfavourable environment with deplete of new resources 

Table 5- Parameters interpretation for 1985-1996 ‘towards sustainable mobility’ 

For the inter-powertrain relationship between BEV and HEV during 1985-1996, our 

estimation results show that, on the one side, HEV was benefiting from the knowledge growth 

in BEV, and on the other side, BEV’s knowledge growth was inhibited by HEV (see Table 6). 

This kind of transaction made HEV as predator (C=-2.35E-03) and BEV as prey (C=9.29E-03) 

in a parasitic relationship. In this period, ICEV was found to be beneficial to the knowledge 

growth of both powertrains of HEV (C=-2.83E-03) and BEV (with C=-2.27E-03) vis-a-vis 

commensal and symbiotic relationships, respectively. In the symbiotic relationship with ICEV, 

BEV was estimated to have benefit the knowledge growth in ICEV with the external interaction 

rate of C=-3.02E-03. 

Technologies 

‘Towards sustainable 

mobility’ 

(1985-1996) 

‘Towards 

hybridisation’ 

(1997-2007) 

‘Towards mass 

commercialisation’ 

(2008-2016) 
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i j 𝐼𝐼𝑖𝑖,𝑗𝑗 𝐼𝐼𝑗𝑗,𝑖𝑖 𝐼𝐼𝑖𝑖,𝑗𝑗 𝐼𝐼𝑗𝑗,𝑖𝑖 𝐼𝐼𝑖𝑖,𝑗𝑗 𝐼𝐼𝑗𝑗,𝑖𝑖 

BEV HEV + - - 0 - + 

  
Prey-predator Commensalism Predator-prey 

ICEV BEV - - 0 + + 0 

  
Symbiosis Amensalism Amensalism 

HEV ICEV - 0 - 0 - - 

  Commensalism Commensalism Symbiosis 
Notes: The value of those coefficients that were not found statistically significant was set to zero. 

Table 6- Inter-powertrain relationship modes 

Table 7 depicts our estimation results for the period of 1997-2007. The environment 

was estimated to become even more favourable for the ICEV powertrain in the second episode 

as it was teemed with further required new resources for its knowledge production 

(k=7.33E+02). The more favourable environment made the incumbent powertrain of ICEV 

even more creative in the industry as it acquired a higher intrinsic knowledge growth rate 

(𝑎𝑎=6.89E-01). This observation can be confirmed by the findings of Borgstedt et al. (2017) 

that ICEV maintained its dominant position in the industry as it remained the core competency 

of the world’s largest incumbent suppliers in the automotive industry e.g. Bosch, Denso, 

Continental and Hitachi. The environment for both HEV and BEV also became suitable as it 

shifted from being slightly unfavourable during the first episode towards slightly favourable 

during the second episode (Table 8). This is evident in the positive carrying capacity of both 

powertrains, 1.07E+01 for HEV and 1.05E+02 for BEV (Table 7). Unlike the first episode that 

HEV and BEV were found to be likely uncreative (Table 5), they shifted their orientation 

towards knowledge variety and creativity as they gained a positive endogenous knowledge 

growth rate in the favourable environment (𝑎𝑎=3.74E-02 for HEV and 𝑎𝑎=3.83E-01 for BEV). 

The environment for BEV changed maybe mostly as a consequence of the establishment of 

some design and production networks in the mid-90’s such as the 1993 partnership for a new 

generation of vehicles (PNGV) and the 1994 automotive research and technological 

development master plan, which accelerated the R&D activities in the field of BEV for the next 

few years (Sierzchula and Nemet, 2015). While HEV could in practice outcompete BEV with 

its higher range and performance, another reason significantly contributed to the knowledge 

growth of the powertrain. As a matter of fact, when the %2 BEV sales requirement for the 

years between 1998-2001 was eliminated from the ZEV mandate in 1996 (Wesseling et al., 

2015), a few major automakers such as Toyota and Honda showed interest and involvement in 

the R&D and marketing activities for HEV (Oltra and Saint Jean, 2009). For example, the 

commercial introduction of the Toyota Prius I in 1997 was so successful in the Japanese green 
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niche that more R&D and marketing activities were undertaken to launch the more advanced 

generation of hybrid vehicles in California, such as the 1998 Honda Insight and the 2000 

Toyota Prius II (Dijk and Yarime, 2010). The high performance of the Toyota Prius II in 

California eventually convinced the California lawmakers to include HEV as a new category 

under the ZEV mandate in 2001. Since 2000 the R&D and marketing activities for HEV 

increased exponentially that the third generation of the Toyota Prius i.e. Prius III, was 

developed and launched worldwide in 2004 (Magnusson and Berggren, 2011). 

The internal interaction rates estimated in Table 7 show that all the three powertrains 

continued their knowledge exploitive orientation in the industry. However, both ICEV and 

HEV powertrains became less knowledge exploitative compared with the first episode 

(b=9.41E-04 and b=3.51E-03, respectively). The knowledge exploitation behaviour of BEV 

did not change much as it continued to be moderately exploitative (b=3.64E-03) (Table 8). The 

estimated inter-powertrain relationships in Table 6 shows that the relationship between ICEV 

and HEV remained the same as HEV continued to benefit from the knowledge growth in ICEV 

vis-à-vis the commensal relationship. On the contrary, the inter-powertrain relationship 

between BEV and HEV and BEV and ICEV changed completely. The initial parasitic inter-

powertrain relationship between BEV and HEV shifted towards commensalism in a way that 

BEV was no longer a prey to the predator HEV as it started benefiting from the hybrid 

powertrain’s knowledge growth (C=-5.83E-03). Furthermore, the initial symbiotic relationship 

between ICEV and BEV shifted towards amensalism in which ICEV turned out to be inhibiting 

the knowledge growth in BEV (C=5.37E-04).  

 Parameters 
(t–value)  

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑘𝑘𝑖𝑖=𝑎𝑎𝑖𝑖/|𝑏𝑏𝑖𝑖| 𝐼𝐼𝑖𝑖,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝑖𝑖,𝐻𝐻𝐼𝐼𝐼𝐼 𝐼𝐼𝑖𝑖,𝐵𝐵𝐼𝐼𝐼𝐼 R2 

ICEV 6.89E-01 9.41E-04 7.33E+02 - -3.03E-03 -2.48E-04 0.9040  
(3.01E+00**) (1.36E+00*)  - (-8.33E-01) (-1.20E-01) 

HEV 3.74E-02 3.51E-03 1.07E+01 -4.24E-04 - -1.56E-03 0.9510  
(5.97E+00***) (2.07E+00*)  (-1.96E+00*) - (-1.26E+00) 

BEV 3.83E-01 3.64E-03 1.05E+02 5.37E-04 -5.83E-03 - 0.9910  
(6.00E+00***) (2.62E+00**)  (1.83E+00*) (-2.56E+00**) - 

The estimation performance is good because all of the R2 are greater than 0.85 (Kreng et al., 2012).  
Notes: *, **, *** significant at p<0.1; p<0.05; p<0.01 

Table 7- Results of parameters estimation for 1997-2007 ‘towards hybridisation’ 

 

 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑘𝑘𝑖𝑖 

ICEV Highly creative Slightly exploitative Highly favourable environment with abundance of new resources 

HEV Slightly creative Moderately exploitative Slightly favourable environment with abundance of new resources) 
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BEV Moderately creative Moderately exploitative Slightly favourable environment with abundance of new resources) 

Table 8- Parameters interpretation for 1997-2007 ‘towards hybridisation’ 

 

From the estimation results for 2008-2016 (Table 9 and 10) we observe that the 

environment during this period was found to have been likely unfavourable to all the three 

powertrains as their effective carrying capacity was estimated with negative values15. The 

environment was estimated to have been highly unfavourable to ICEV (k=-3.09E+03), slightly 

unfavourable to HEV (k=-5.61E+02), and moderately unfavourable to BEV (k=-1.59E+03). 

This implies that the population of patents in every single technological field have exceeded 

the corresponding effective carrying capacity to an extent which the environment could no 

longer provide the required new resources for knowledge development. Accordingly, the 

intrinsic knowledge growth rate of all the three powertrains was estimated with negative values. 

While ICEV and HEV were found to be moderately uncreative in the industry (𝑎𝑎=-1.01E+00 

and 𝑎𝑎=-9.83E-01, respectively), BEV was found to be more uncreative than the other two with 

𝑎𝑎=-1.38E+00. Perhaps the environment turned out to be less unfavourable to HEV and BEV 

because of the emergence of some exogenous factors (events) in the industry shed more lights 

on the green vehicle economy, such as the 2005 fuel price soar, the emergence of the oil 

independent economy (Barbieri, 2016), the financial crisis of 2007 (Laperche et al., 2011), and 

the global awareness of environmental concerns (Hcec, 2005; Nielsen, 2007). For instance, a 

substantive amount of funding was allocated by the American Reinvestment and Recovery Act 

of 2009 to the office of Energy Efficiency and Renewable Energy (EERE) for the battery R&D 

in the U.S. (Public-Law-111-5, 2009). Nevertheless, the BEV powertrain still remained the 

core competency of smaller suppliers and firms whose main operations were outside the 

industry, such as Toyota Industries Corporation, LG Group, Toshiba, and Fuji Electric 

(Borgstedt et al., 2017; Faria and Andersen, 2017a). 

In the likely unfavourable environment, ICEV continued its previous slightly 

exploitation strategy (b=3.26E-04), and while BEV became much less knowledge exploitative 

(b=8.68E-04), HEV shifted from being moderately exploitative towards moderately 

explorative (b=-1.75E-03). The inter-powertrain relationships estimated for the third episode 

(Table 6) show that the last relationship between BEV and HEV resembles the parasitic 

relationship during the first episode. The only difference in the parasitic relationship is that this 

time the position of the prey and the predator completely changed as BEV became the predator 
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(c=-3.20E-03) and started benefiting from the knowledge growth in the prey powertrain of 

HEV (c=5.21E-04). Similarly, the direction in the ICEV-BEV amensalim relationship reversed 

as this time BEV started inhibiting the knowledge growth in ICEV (c=8.60E-04). While HEV 

continued benefiting from the knowledge growth in ICEV (c=-1.40E-04), their relationship 

shifted from commensalism to symbiosis as ICEV also started benefiting from the knowledge 

growth in HEV (c=-4.11E-03). 

 Parameters 
(t–value)  

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑘𝑘𝑖𝑖=𝑎𝑎𝑖𝑖/|𝑏𝑏𝑖𝑖| 𝐼𝐼𝑖𝑖,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝑖𝑖,𝐻𝐻𝐼𝐼𝐼𝐼 𝐼𝐼𝑖𝑖,𝐵𝐵𝐼𝐼𝐼𝐼 R2 

‘Towards mass commercialisation’ (2008-2016) 
ICEV -1.01E+00 3.26E-04 -3.09E+03 - -4.11E-03 8.60E-04 0.9060  

(3.35E+00***) (1.79E+00*)  - (-4.41E+00***) (4.96E+00***) 
HEV -9.83E-01 1.75E-03 -5.61E+02 -1.40E-04 - 5.21E-04 0.9760  

(6.13E+00***) (-3.81E+00**)  (-2.06E+00*) - (5.70E+00***) 
BEV -1.38E+00 8.68E-04 -1.59E+03 -7.70E-05 -3.20E-03 - 0.9850  

(7.52E+00***) (1.43E+01***)  (-1.39E+00) (-1.05E+01***) - 

The estimation performance is good because all of the R2 are greater than 0.85 (Kreng et al., 2012).  
Notes: *, **, *** significant at p<0.1; p<0.05; p<0.01 

Table 9- Results of parameters estimation for 2008-2016 ‘towards mass commercialisation’ 

 

 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑘𝑘𝑖𝑖 

ICEV Moderately uncreative Slightly exploitative Highly unfavourable environment with deplete of new resources) 

HEV Moderately uncreative Moderately explorative Slightly unfavourable environment with deplete of new resources 

BEV Highly uncreative Slightly exploitative Moderately unfavourable environment with deplete of new resources) 

Table 10- Parameters interpretation for 2008-2016 ‘towards mass commercialisation’ 

 

5. Discussion and concluding remarks 

We observe in the literature of conventional fields that the concept of competition 

between firms or technologies has been frequently used as the unit of analysis for explaining 

the evolution of technologies (Barney, 1991; Coccia and Watts, 2020; Fisher and Pry, 1971; 

Porter, 2008; Teece et al., 1997; Utterback, 1994). However, the interaction between 

technologies is not necessarily pure competition since the nature of any technological systems 

is to minimise negative effects as well as maximise positive effects in the market (Coccia, 

2019b; Coccia and Watts, 2020). Technologies co-evolve vis-a-vis an evolution of reciprocal 

adaptations that may lead to different multi-mode interactions over time and space (Bryan et 

al., 2007; Coccia, 2017, 2019a,d; Geels, 2005; Raven and Verbong, 2007; Sandén and Hillman, 

2011; Yang et al., 2019). In our study, we discovered a mix matrix of supportive and inhibitive 
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forces that ended up in relationships other than pure competition, i.e. amensalism, parasitism, 

commensalism, and symbiosis. This supports our argument that the powertrain technologies 

are more likely to influence the knowledge growth of one another both positively and 

negatively in different periods.  

The simultaneous presence of both positive and negative forces in our case nuances 

Schumpeter’s gale of ‘creative destruction’ as well as the single-narrowing path forward view 

in which a disruptive technology outcompetes all the rivals by building an irreversible lock-in 

situation that makes the incumbent technology withdraw from the market (Schumpeter, 1934; 

Vergne and Durand, 2010). For example, we discovered that the two seemingly competing 

powertrains of ICEV and BEV benefitted from the knowledge growth of one another in a 

symbiotic relationship between 1985-1996. On the one hand, like most emerging technologies 

BEV benefited from a variety of factors provided by the first mover technologies like ICEV 

(Pistorius and Utterback, 1997), such as the distribution channel, market, educated customers, 

road and traffic infrastructure (Dijk, 2014; Dijk et al., 2015). On the other hand, the incumbent 

ICEV also started to benefit from the situation; first started accelerating improvements in its 

own technological components by noticing the emergence of BEV16; second it started 

borrowing some electric components from BEV for fuel efficiency (Dijk, 2014; Dijk et al., 

2015). Such mutual benefits between competing technologies can be observed also among 

human beings in society since individuals occasionally display altruistic traits17 by giving up 

their own resources to benefit the neighbourhood peers (Coccia, 2019b; Wenseleers, 2006). 

Therefore, the frequent existence of positive externalities in our case shows that the automotive 

industry has experienced a portfolio of multiple co-existing technological paths that may 

initially seem competing with one another for the same sources of ideas or knowledge domains 

but occasionally cooperate with one another by building spillovers of positive developments.  

The strong evidence of the inter-powertrain positive and negative forces can be 

supported and explained by the concept of ‘positive and negative externalities’ in the 

technology management literature (Bergek and Onufrey, 2013; Onufrey and Bergek, 2015). A 

technology that possesses a positive or negative internal growth may project positive 

externalities or negative externalities in other surrounding technologies. This way positive or 

negative externalities are in fact the ‘mirror effects’ of the positive or negative internalities of 

the technology in the other technologies (Bergek and Onufrey, 2013). Positive externalities are 

evident in the three biological modes of symbiosis, commensalism, and parasitism (the positive 
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side); while negative externalities are evident in the three modes of competition, amensalism, 

and parasitism (the negative side). Mirzadeh Phirouzabadi et al. (Unpublished results) argue 

that technological systems project as well as receive positive and negative externalities through 

their mutually coupled dynamics, e.g. knowledge development co-dynamics. Such co-dynamics 

can initiate knowledge spillovers from one system to another, which can lead to knowledge 

overlaps or couplings between the interacting systems (Noailly and Shestalova, 2017). The 

direction of knowledge spillovers (or externalities) generally depends on whether the 

interacting technological systems choose to acquire (or grant) knowledge during the interaction 

(Castiaux, 2007; Cerqueti et al., 2015; Mirzadeh Phirouzabadi et al., Unpublished results). The 

technological system that receives knowledge spillovers from the other systems possesses a 

negative external interaction value (negative C). Because the system generally opens up its 

knowledge perspectives mostly by bringing and exploiting the newness and knowledge variety 

from the other systems through actions such as collaboration with their organisations and 

customers, employment of their human capitals, or use of their artefact and patents (Castiaux, 

2007). The technological systems that spill knowledge over to the system that receives it 

usually possess a positive external interaction value (positive C). This may be because the 

interaction has had a detrimental effect on the functioning of the systems through actions such 

as free riding, dismantling or weakening their knowledge networks, and altering their structures 

through acquisition and merger activities (Castiaux, 2007; Kivimaa and Kern, 2016; Mirzadeh 

Phirouzabadi et al., Unpublished results). These systems, hence, mostly focus on creating new 

knowledge endogenously through the creative orientation of internal individuals or actors, 

collaborative contacts between internal actors, learning from its customers, etc. (Castiaux, 

2007). For example, the HEV-BEV parasitic relationship that we observed during the first 

period implies that there were some knowledge spillovers from the prey powertrain of BEV 

(with positive C) towards the predator powertrain of HEV (with negative C). The observed 

knowledge spillovers can be confirmed by the fact that the predator powertrain of HEV initially 

started borrowing and exploiting the knowledge domains that were originally developed for 

the components of the prey powertrain of BEV such as battery, charger, power convertor and 

controller, and traction and electric motor. For example, in the early 90’s the Toyota hybrid 

system project team benefited enormously from the technological knowledge in the battery 

component that was already developed in cooperation with Mitsubishi for the BEV powertrain 

(Dijk, 2014; Köhler et al., 2013). Our results for the third episode, however, implies that the 

initial direction of the knowledge spillovers between the two interacting powertrains entirely 

changed from the first episode. While both powertrains maintained a parasitic relationship, this 
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time the knowledge was being spilled over from the prey powertrain of HEV (with positive C) 

to the predator powertrain of BEV (with negative C). This may be because the predator 

powertrain of BEV has been able to not only exploit the effects of the economies of scale and 

learnings created by the prey powertrain of HEV for the shared components (i.e. battery, 

charger, power convertor and controller, and traction and electric motor), but also enjoy the 

positive social image and user acceptance created around the prey hybrid powertrain (Dijk, 

2014). 

The knowledge spillovers or externalities between the powertrain technologies exist 

because the knowledge domains produced for the development of a specific technology do not 

necessary exist for the sole development of the technology, but instead can be simultaneously 

embedded and exploited for several other technologies (Bergek et al., 2015; Mirzadeh 

Phirouzabadi et al., 2020a; Sandén and Hillman, 2011). This can be explained by the fact that 

knowledge is a multi-purpose good and can be indefinitely used and combined for different 

applications (Carnabuci, 2010; Mirzadeh Phirouzabadi et al., Unpublished results). This 

parallels the new growth theory that the knowledge domain growing around a technology (e.g. 

skills, tacit and codified knowledge) is driven by a recombinant of the existing knowledge 

domains around other technologies (Weitzman, 1996). Some studies argued and demonstrated 

that the actual or potential overlaps between technologies can be considered as a basis for the 

establishment of inter-technology relationships (Mirzadeh Phirouzabadi et al., 2020a; 

Mirzadeh Phirouzabadi et al., Unpublished results; Sandén and Hillman, 2011). In a biological 

ecosystem the various inter-population biological relationships occur because the populations 

actually or potentially have overlaps in terms of various resources such as air, food, and 

territory. Mirzadeh Phirouzabadi et al. (2020a), for instance, observed that the symbiotic and 

commensal relationships between HEV and BEV corresponded to the shared collaborations on 

the IPC classifications of B60K0006, B60L0011 and B60K000718. Hence, in our case of 

powertrain technology, we can argue that the inter-powertrain biological relationships emanate 

from the actual or potential knowledge overlaps that are built between them over time vis-à-

vis knowledge spillovers. Future studies can substantiate and elaborate the existence of 

potential or actual overlaps between technologies as a basis for their inter-technology 

relationships.  

As observed in the previous section, the behaviour of the powertrain systems and the 

relationship mode between them go through temporal transitions from one episode to another. 
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We observed a shift from being creative (positive 𝑎𝑎) to uncreative (negative 𝑎𝑎), from being 

exploitive (positive b) to explorative (negative b), and from parasitism to commensalism and 

symbiosis (a mix of positive and negative values for the parameter C), or vice versa. The 

phenomenon of temporal behavioural changes and transitions can be related to both 

endogenous and exogenous factors (Coccia, 2019b; Markard and Hoffmann, 2016; Mirzadeh 

Phirouzabadi et al., Unpublished results; Pistorius and Utterback, 1997; Sandén and Hillman, 

2011; Teece et al., 1997). We observed that the behaviour of the powertrain systems depended 

on whether the environment turned out to be favourable or unfavourable to them. A 

technological system might become more knowledge exploration oriented when there exists a 

net effect of internal and external economies of scale for the knowledge production in the 

system, such as declining of long-term average costs (Chiang and Wong, 2011). When the 

system senses a net effect of internal and external diseconomies of scale, it might stop exploring 

and building new knowledge and start exploiting the existing knowledge. In the case of BEV 

and HEV for instance, the temporal behavioural changes and transitions can be related to 

factors such as technical difficulties (e.g. limited ranges, and low performances), infrastructural 

unpreparedness (e.g. lack of maintenance and charging facilities), economical infeasibility (e.g. 

high costs), political (e.g. lobbying efforts by automobile and oil sectors) and market barriers 

(e.g. low demands and the need for high incentives such as direct subsidies, free parking, and 

CO2 and fuel taxes) (Dijk et al., 2013; Franke and Krems, 2013; Høyer, 2008; Prud'homme 

and Koning, 2012; Rudolph, 2016; She et al., 2017; Wesseling et al., 2014a). While future 

studies may look into the detailed reasons behind the temporal behavioural changes and 

transitions of the powertrain systems, any generic or specific behavioural patterns can be 

investigated and tracked down for forecasting purposes. For example, they may find the same 

spiral of exploration, exploration-to-exploitation, exploitation, and exploitation-to-exploration 

which was observed between two interacting organisations (Castiaux, 2007). Identifying the 

stability or instability state of a system can be instrumental to knowing the revival or demise 

of the system’s intrinsic or interactive behaviour (Castiaux, 2007; Senge, 1997). These states 

can be determined by searching the equilibrium or tipping point in the L-V equations, where 

the time derivatives are equivalent to null (i.e. dX /dt = 0, dY /dt = 0, and dZ /dt = 0) (Castiaux, 

2007; Choi et al., 2016). This point refers to a spot on the S-curve where the growth of a 

technology can accelerate dramatically and later sustain by only some insignificant changes 

(Phillips, 2007; Zeppini et al., 2014). 

The results of our research can inform the decisions of those managers and policy 
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makers who want to know when to invest in the R&D of new disruptive technologies by 

offensive strategies; when to sustain the incumbent technology by defensive strategies; and 

when to pursue a hybridised technology as a transitionary option by intermediate strategies 

(Coccia and Watts, 2020; Utterback et al., 2018). The mix matrix of supportive and inhibitive 

forces (or positive and negative externalities) informs policy makers and managers that their 

policy mixes can generate not only positive or negative internalities for the intended powertrain 

technology, but also positive and negative externalities in the field of other powertrain 

technologies. This is because innovation policy mixes can possess the dual role of creation and 

destruction in the industry (Kivimaa and Kern, 2016). An innovation strategy may, hence, turn 

out as the two sides of a coin. It may be initially formulated to lead to the creation of a 

technology, but at the same time, it may lead to the destabilization of another neighbourhood 

technology (Mirzadeh Phirouzabadi et al., 2020a). The phenomenon of multi-modal interaction 

also recommends that the innovation strategy dedicated to a specific technology will be not 

necessarily unitary and should not be formulated in isolation from other technologies. This 

situation can be observed in the lawsuit action which was filed by the major automakers against 

the CARB’s ZEV mandate in 2002. While the major automakers forced the policy makers to 

include the new but less promising powertrain of fuel cell vehicles (FCV)19 in the ZEV mandate 

(Nrdc et al., 2008; Wesseling et al., 2015), their action eventually led to the destabilization of 

the BEV powertrain situation that happened to be a more mature and promising technology at 

the time (Mirzadeh Phirouzabadi et al., Unpublished results). We recommend that policy 

makers and managers formulate an innovation strategy devised for a relationship mode 

between two interacting technologies differently from an innovation strategy devised for 

another relationship mode between them. For instance, a symbiosis strategy should be 

differently formulated from a pure competition or parasitism strategy. A typical symbiosis 

strategy should be formulated in a way that would aim at supporting the growth of the two 

interacting technologies, while a parasitism strategy should aim at supporting the growth of 

one technology and inhibiting the other (Utterback et al., 2018). Additionally, the temporal 

inter-powertrain relationship transition in our case study recommends them not only to devise 

and deploy specific (offensive or defensive) strategies for each of the interaction modes but 

also to change their strategies in accordance with the transition between the modes (Pistorius 

and Utterback, 1997; Utterback et al., 2018). If policy makers and managers perceive a 

temporal transition from symbiosis to parasitism among two interacting technologies, the 

nature of strategy should accordingly shift from symbiosis to parasitism. Selection of a wrong 

strategy for a particular mode can be catastrophic and irreversible (Utterback et al., 2018). Such 
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an understanding is crucial in the area of sustainability transition in which the goal is escaping 

from dysfunctional locked-in systems while fostering better long-term prospects and avoiding 

dead ends (Sandén and Hillman, 2011).  

Finally, future studies may wish to investigate the inter-powertrain relationships with 

the inclusion of intra-component interactions within individual powertrain systems. Based on 

technology definition (Coccia, 2019b,c; Simon, 1991), the evolution of a powertrain system 

not only involves the inter-systems relationships (i.e. the linkage with the other powertrain 

systems) but also the intra-component relationships (i.e. the linkages between its own 

component and sub-component). We considered each powertrain system as a whole (single 

entity) without going into details for the intra-component relationships. For example, the 

powertrain system of BEV itself is comprised of several components such as battery, charger, 

power convertor and controller, and traction motor which are not isolated from one another, 

but rather interact with one another as parts of the overall design (Mcnerney et al., 2011). This 

can be significant as the behaviour and evolution of a technological system is internally 

associated with the behaviour and evolution of its own components (Coccia, 2019b; Coccia 

and Watts, 2020; Mcnerney et al., 2011; Zhang et al., 2019c). The theory of host and parasite 

technologies (Coccia, 2019d) can be applied here as it for example considers the BEV system 

as the host technology (platform) and the internal connecting components as parasite 

technologies. This way we can investigate both the trickle-up effect (the effect from system 

level to component level) and trickle-down effect (vice versa) within technological systems 

(Zhang et al., 2019b; Zhang et al., 2019c). With the identification of the most effective and 

significant components in each technological system, policy makers and managers can discover 

not only which components need more incentives and regulations for accelerating the evolution 

of the systems as a whole, but also which components should be invested and designed in-

house or outsourced and purchased from outside (Zhang et al., 2019a). 
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Appendix A 

Search terms of keywords and IPC codes (Mirzadeh Phirouzabadi et al., 2020a; Mirzadeh 
Phirouzabadi et al., 2020b) 

Technological field Search query 

ICEV-related patents TAB=(("internal combustion engine" OR "ic engine" OR "diesel engine") 
AND (vehicle* or car or automobile*)) AND (PRDS>=(19850101) AND 
PRDS<=(20161231)) AND IC=(F01* OR B60* OR F02B* OR F02D* 
OR F02F* OR F02M* OR F02N* OR F02P*); 

HEV-related patents TAB=("hybrid electric vehicle" OR "hybrid vehicle" OR "hybrid 
propulsion" OR "hybrid car" OR "hybrid automobile" OR "hybrid electric 
car") AND (PRDS>=(19850101) AND PRDS<=(20161230)) AND 
IC=(F02* OR F16H* OR B60K006* OR B60W020 OR B60L00071* OR 
B60L000720) 

BEV-related patents TAB=(("electric vehicle" OR "electric car" OR "electric automobile") 
AND battery AND (vehicle* or car or automobile*)) AND 
(PRDS>=(19850101) AND PRDS<=(20161230)) AND IC=(H02k* OR 
H01M* OR B60L011* OR B60L003* OR B60L015* OR B60K00101* 
OR B60W001008 OR B60W001024 OR B60W001026) 

The asterisk wildcard (*) represents zero or an unlimited number of characters. For instance, vehicle* also 
includes results containing vehicles, or B60K006* also includes results containing B60K00620, B60K00646, 
and so on. 

 

 

Appendix B 
Descriptive statistics of the patents data for each powertrain technology 

  BEV HEV ICEV 

N Valid 32 32 32 
Missing 0 0 0 

Mean 584.0625 340.25 1536.0625 
Std. Error of Mean 132.61413 58.9137 186.02093 
Median 261 243.5 1282.5 
Mode 1.00a 1 318.00a 
Std. Deviation 750.17881 333.26624 1052.29332 
Variance 562768.254 111066.387 1107321.22 
Skewness 1.563 0.693 0.479 
Std. Error of Skewness 0.414 0.414 0.414 
Kurtosis 1.31 -0.77 -1.246 
Std. Error of Kurtosis 0.809 0.809 0.809 
Range 2507 1018 3088 
Minimum 1 1 318 
Maximum 2508 1019 3406 
Sum 18690 10888 49154 
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powertrain (PHEV) in our research. 
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way forms a network of elements where novel elements are created from existing ones and where more 

complicated elements evolve from simpler ones (Arthur and Polak, 2006, p23). 

3 There are generally seven dynamics in a TIS: knowledge development, knowledge diffusion, entrepreneurial 

activities, guidance of search, resource mobilization, market formation and creation of legitimacy. And when a 

dynamic from a TIS becomes coupled with the same dynamic in another TIS, a co-dynamic is shaped between 

them. Since the focus in our research is studying multi-technology interactions in terms of knowledge growth 

and development, we only investigate knowledge development dynamics and co-dynamics. This is simply 

because conceptualising as well as quantifying all the seven dynamics and co-dynamics of technologies is 

beyond the scope and space of a single article. 

4 This included Automotive News, WardsAuto World, Autoweek, Financial Times (Bohnsack et al., 2015). 

5 Wherever we mention patent(s) in this study, we mean patent family(ies). For detailed justification, see 

Borgstedt et al. (2017). 

6 The priority date of a patent is known as the closest date to the submission of the invention (Barbieri, 2016). 

7 “A patent is valid if the claim contains the categorized technology as well as the possibility of an automotive 

utilization” (Borgstedt et al., 2017, p79). 

8 For mathematical details, refer to Porter et al. (1991: p. 191). 

9 The carrying capacity of a biological species in an environment is generally understood as the maximum 

population size that the environment can sustain the species indefinitely, given the food, habitat, water and other 

necessities available in the environment (Yukalov et al., 2012). So, by definition, ‘k’ can determine only the 

maximum population size not the actual population size. It may however be used to calculate the difference 

between the actual population size and the maximum population size. ‘k’ starts declining when the environment 

(and the resources that it provides) becomes unfavourable (or seldom) to the species. ‘k’ can decline so much 

that it can gain a negative value. In some studies, when they found a negative value for carrying capacity, they 

assumed ‘k’ is zero (Gabriel et al., 2005), meaning the environment can only support zero population. Like 

some other studies (Yukalov et al., 2012), we however kept negative values and did not change the values to 

zero to emphasize how extremely unfavourable the environment has become for the population. The negative 

carrying capacity refers either to the complete depletion of resources required to meet the needs of the 

population, or to the accumulation of too much of their wastes that will poison the population eventually, or to 

both (Advani et al., 2018; Hui, 2006). And Since the environment will no longer be able to provide the required 

resources not only for the birth of their new offspring but also for the current situation of the existing ones, the 
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population will start declining in numbers with a negative endogenous growth. The explanation for the existence 

of a negative carrying capacity becomes even more transparent when the unit of analysis is technological or 

economic systems. The negative carrying capacity of a system can not only refer to the depletion of the required 

resources for the system (for example humans over-extracting the renewable and non-renewable resources), but 

also to the borrowed resources that need to be returned back to the lender—assuming that there is a maximum 

level of debt, beyond which the system highly loses its stability due to feedbacks resulting from market forces 

(Yukalov et al., 2012). 

10 While ‘k’ is calculated using the parameters ‘a’ and ‘b’, and ‘a’ and ‘k’ will always have the same sign in our 

analysis since k= a/|b|, it does not necessarily mean that ‘a’ and ‘b’ are responsible for the resource provision in 

the environment. The environment with infinite, renewable resources can set unlimited maximum population 

level for a population, on the one hand, and the same environment can bring unfavorable circumstances for the 

same population through catastrophic events or accommodating other new entrants that the population would 

face a dead-end, on the other hand. Parameters ‘a’ and ‘b’ are only determining at what speed the resources 

provided by the environment are being consumed. Hence, ‘k’ can be used to imply if the environment is 

favourable to a population or not (Advani et al., 2018; Hui, 2006). 

11 Since we initially and mainly selected the cut points in our research based on major industry events, the cut 

points used in the literature (Faria and Andersen, 2017a; Faria and Andersen, 2017b; Mirzadeh Phirouzabadi et 

al., 2020a; Mirzadeh Phirouzabadi et al., 2020b), and the trend of our raw data, a robustness check was 

completed to see how the value of parameters change if we select different cut points. To do so, we selected the 

first episode (1985-1996) as it contains the most influential technology forcing event in the middle, i.e. the 

California 1990 ZEV Mandate. We halved the first episode into two sub-episodes: the first half 1985-1990 

(before the Mandate) and the second half 1991-1996 (after the Mandate). We then performed an intra-episode 

comparison by estimating and comparing the value of parameters ‘a’, ‘b’, ‘k’, and ‘c’ for each sub-episode. The 

results showed that the value of parameters not only changed slightly from 1985-1990 to 1991-1996, but also 

remained relatively close to the results for the entire episode (1985-1996). Apart from the intra-episode 

comparison, we also did an inter-episode comparison. We halved the second episode 1997-2007 into two sub-

episodes 1997-2002 and 2003-2007, and then compared the results of the second half of the first episode 1991-

1996 with the results of the first half of the second episode 1997-2002. Unlike the intra-episode comparison 

findings, we observed that the value of parameters shifted remarkably from 1991-1996 to 1997-2002. The value 

of some parameters shifted so much that their sign changed from positive to negative and vice versa. Our intra 
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and inter-episode comparison findings demonstrate that the values of parameters vary slightly when two 

segments are taken and compared from the same episode while they vary drastically when two segments are 

taken and compared from two different episodes. Although this robustness check demonstrates our appropriate 

selection of cut points mainly for the first episode, other different cut points can be taken and compared for 

stronger robustness by future studies. 

12 Descriptive statistics such as mean, SD, skewness and kurtosis is exhibited for the patents data of each 

powertrain technology in Appendix B. 

13 All the thresholds ‘slightly/moderately/highly’ are relative to other time periods included in the analysis 

instead of an absolute extent. We determined the threshold points for a parameter first by calculating the 

minimum, maximum, mean (µ=sum/n), and standard deviation (σ=(max-min)/6) for the range of values 

estimated for the parameter, and then forming the normal distribution chart using µ, µ±σ, µ±2σ, and µ±3σ. Note 

that since interpretation for the positive values of a parameter is different from interpretation for its negative 

values, we measured threshold points for the positive values separately from threshold points for the negative 

values. For instance, for the four positive values estimated for the parameter ‘a’ during all the three episodes, the 

threshold points were set as follows: slightly creative if a=<µ-σ; moderately creative if µ-σ<a<µ+σ; and highly 

creative if a>=µ+σ.  

14 Some of the main standards and regulations in the U.S. were the 1970 Clean Air Act and its amendments in 

the 70s, 80s, and 1990, and the 1989 Low Emission Vehicles (LEV) program and its amendments in 90s and 

2000s. Elsewhere around the world, especially the EU countries adopted the U.S. vehicle emission standards 

under various titles such as ECE 15 in 1970, amended several times in 1974, 1977, 1979, 1981, 1984 and 1986, 

ECE 83 in 1988, 91/441/EEC in 1991, and 94/12/ECE in 1994. Other countries, such as Argentina, Australia, 

Brazil, and Canada started following the same standards and requirements as of early 1995 (Faiz et al., 1996). 

15 This is worth mentioning that we obtained negative values for the carrying capacity as well as the intrinsic 

growth rate of all the powertrains in the last episode because the number of patents of all the three powertrains 

was decreasing since 2013 (Figure 1a). Two reasons could exist when the number of patents in a technological 

field declines at the end of observation period. First, the lower number of patents could be due to less innovative 

activities or collaborations in the technological field. Second the patent database could not include those patents 

accepted after the completion of the sample due to the long timespan between the application and publication of 

a patent (Borgstedt et al., 2017). The second reason could be more plausible for the case of powertrain 

technologies since the R&D activities at least for BEV and HEV must have increased in the last decade, 
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especially once the most stringent sales requirements of ZEV were set in 2012 for the model years 2018-2025. 

Solving the patent pendency, however, is inevitable for a timely analysis (Borgstedt et al., 2017; Mirzadeh 

Phirouzabadi et al., 2020a). 

16 The huge improvement reaction that the incumbent ICEV powertrain projected after the emergence of the 

BEV powertrain is known as ‘sailing ship effect’ in innovation studies (Sick et al., 2016). The concept 

originally refers to the innovation efforts that the incumbent sailing ships gained after noticing the introduction 

of the newly developed steam ships in the 19th century (Gilfillan, 1935). 

17 While such altruistic traits conflict with the Darwinian theory of natural selection as they may temporarily and 

to some extent lower the reproductive fitness of individuals, there are ample evidences of cooperation between 

potentially competing entities in both natural and social systems (Coccia, 2019b). 

18 These IPC classifications are related to the arrangement or mounting of plural diverse prime-movers for 

mutual or common propulsion, battery development, electric motors and dynamo-electric machines. 

19 We did not include the FCV powertrain in our research due to time and space restriction. This did not, 

however, affect our results as we reached a high estimation performance. Future studies can include and specify 

the other powertrains such as FCV and PHEV to perfect the analysis. 
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